Quartic surfaces, their bitangents and rational points

نویسندگان

چکیده

Let X be a smooth quartic surface not containing lines, defined over number field K. We prove that there are only finitely many bitangents to which This result can interpreted as saying certain surface, having vanishing irregularity, contains rational points. In our proof, we use the geometry of lines double solid associated X. somewhat opposite direction, show on any K, set algebraic points in X(\overeline K) quadratic suitable finite extension K' K is Zariski-dense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quartic Curves and Their Bitangents

A smooth quartic curve in the complex projective plane has 36 inequivalent representations as a symmetric determinant of linear forms and 63 representations as a sum of three squares. These correspond to Cayley octads and Steiner complexes respectively. We present exact algorithms for computing these objects from the 28 bitangents. This expresses Vinnikov quartics as spectrahedra andpositive qu...

متن کامل

Rational points on diagonal quartic surfaces

We searched up to height 107 for rational points on diagonal quartic surfaces. The computations fill several gaps in earlier lists computed by Pinch, Swinnerton-Dyer, and Bright.

متن کامل

Density of Rational Points on Diagonal Quartic Surfaces

Let a, b, c, d be nonzero rational numbers whose product is a square, and let V be the diagonal quartic surface in P defined by ax + by + cz + dw = 0. We prove that if V contains a rational point that does not lie on any of the 48 lines on V or on any of the coordinate planes, then the set of rational points on V is dense in both the Zariski topology and the real analytic

متن کامل

Rational Points on Quartic Hypersurfaces

Let X be a projective non-singular quartic hypersurface of dimension 39 or more, which is defined over Q. We show that X(Q) is non-empty provided that X(R) is non-empty and X has p-adic points for every prime p.

متن کامل

K3 Surfaces, Rational Curves, and Rational Points

We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E?pijournal de ge?ome?trie alge?brique

سال: 2023

ISSN: ['2491-6765']

DOI: https://doi.org/10.46298/epiga.2022.8987